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1 Introduction

One definition of the Mandelbrot set is

M = {c : c ∈ C, J(fc) is connected} ,

where fc : C → C is the quadratic map defined by fc(z) = z2 + c and J(fc) is the
associated Julia set.

In 1982 Douady and Hubbard [3] proved that the Mandelbrot set itself is a
connected set (there is another proof in [1, Section 9.10]). Clearly being connected
is an important property for a set to have, so in these notes we try and explain what
it means to say that a set is connected. The result is the briefest of introductions to
topology, starting from scratch. Hopefully anyone who hasn’t studied any topology
at all will be able to get some idea of what’s involved although some mathematical
experience is needed. There is also the question as to whether or not the Mandelbrot
set is locally connected, and we will try and make clear what this means too, and
why it is an important open problem. Our guide to most of the definitions and
results is Sutherland’s book [10], where many other areas of topology are covered.
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2 Open sets

Any open set has something of the infinite about it. In some cases like the complex
plane, C, which is an open set, this is fairly obvious as we can travel off to infinity in
all directions. For the open unit disc D = {z : z ∈ C, |z| < 1} the infinite becomes
apparent as soon as we realise that D is much the same as C under the one-to-one
and onto map f(z) = z/(1 − |z|). We prove D is topologically equivalent to C in
Lemma 2.8.

The definitions of the various types of connectedness that we will meet require
only the ideas of open sets and continuous functions. This makes topological spaces
rather than metric spaces the most general setting for the definitions. However
topological spaces can always be derived from the open sets in metric spaces, so we
start by defining an open set in the context of a general metric space before giving
the definition of a topological space in Subsection 2.2.

2.1 Metric spaces

A metric space (X, d) is a non-empty set X together with a metric (a distance
function) d : X ×X → R which satisfies the following axioms for all x, y, z ∈ X

(M1) d(x, y) > 0; d(x, y) = 0 if and only if x = y,

(M2) d(x, y) = d(y, x),

(M3) d(x, z) 6 d(x, y) + d(y, z).

The third axiom (M3) is called the triangle inequality. For a metric space (X, d) if
A ⊂ X is non-empty then (A, dA) can be considered as a metric subspace where dA
is the restriction of d to A × A. Clearly the axioms for a metric hold for dA, for
x, y, z ∈ A, because they hold for d.

The open ball of centre x and radius r > 0, is defined as

S(x, r) = {y : y ∈ X, d(x, y) < r} .

A set A ⊂ X is open if and only if for every x ∈ A there exists r > 0 such that
S(x, r) ⊂ A.

We use phrases like “open in X” or “open subset of X” and the notation SX(x, r)
whenever we wish to emphasise the parent space when this may not be obvious from
the context. This is because whether or not a set is open depends on the parent
space being referred to. We also use phrases like “open with respect to the metric
d” or “d-open” when we wish to point out the metric being used. For open balls
we may write S(d)(x, r) because changing the metric changes open balls as we now
describe. (The open unit disc in C with the Euclidean metric we can write as
D = SC(| |)(0, 1).)

Consider the following three metrics which are taken from [10, Examples 2.2.3].
These metrics are defined on n-dimensional Euclidean space, which is the Cartesian
n-fold product of R

Rn = R× R× · · · × R︸ ︷︷ ︸
n times

= {(x1, x2, . . . , xn) : xi ∈ R, 1 6 i 6 n} ,
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and are defined, for x, y ∈ Rn, as

d1(x, y) =
n∑
i=1

|xi − yi| ,

d2(x, y) = |x− y| =

(
n∑
i=1

(xi − yi)2
) 1

2

,

d∞(x, y) = max
16i6n

{|xi − yi|} .

(2.1)

The first metric d1(x, y) is known as the taxicab metric as it measures the distance
between points in R2 as lengths of the sides of right-angled triangles, so it measures
the distance a taxi may travel in the grid-like street plan of a modern city. We call
d2(x, y) the Euclidean metric and use the notation |x− y| for it. For the complex
plane C, which is the same set of points as R2, the Euclidean metric is the same as
the modulus function. It is easy to see that (M1) and (M2) hold but for (M3) we
need to make use of the Cauchy-Schwartz inequality (for a proof see [10, Example
2.2.1]). Let a, b ∈ Rn then the Cauchy-Schwartz Inequality states that(

n∑
i=1

aibi

)2

6

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
. (2.2)

Let x, y, z ∈ Rn, then to show (M3) holds for the Euclidean metric we need to show
|x− z| 6 |x− y|+ |y − z|. This is the following inequality, after squaring both sides
and putting ai = xi − yi, bi = yi − zi, so that ai + bi = xi − zi,

n∑
i=1

(ai + bi)
2 =

n∑
i=1

(
a2i + 2aibi + b2i

)
6

n∑
i=1

a2i + 2

(
n∑
i=1

a2i

) 1
2
(

n∑
i=1

b2i

) 1
2

+
n∑
i=1

b2i ,

which holds by (2.2). To prove (M3) holds for d1(x, y) and d∞(x, y) is now straight-
forward as they are defined in terms of the Euclidean metric for which we can now
use the triangle inequality.

We introduced these metrics in order to show how different metrics produce dif-
ferent open balls. This is illustrated in Figure 2.1 where we can see the different
shapes of S(x, r), in R2 (or C), for each of the metrics (a) d1(x, y), (b) d2(x, y) =
|x− y| and (c) d∞(x, y). It is clear from the definitions that for any x, y ∈ Rn,
d1(x, y) > d2(x, y) > d∞(x, y) and it follows that S(d1)(x, r) ⊂ S(d2)(x, r) ⊂
S(d∞)(x, r) which is also evident from Figure 2.1. For future reference we collect
together some inequalities between the three metrics in the next lemma.

Lemma 2.1. For x, y ∈ Rn, and the metrics defined in (2.1),

d1(x, y) > d2(x, y) > d∞(x, y) >
1√
n
d2(x, y) >

1

n
d1(x, y).

Proof. The first two inequalities follow from the definitions. For the third clearly
nd∞(x, y)2 > d2(x, y)2. For the last inequality nd2(x, y)2 > d1(x, y)2 follows from
the Cauchy-Schwartz Inequality, since putting bi = 1, for 1 6 i 6 n, in (2.2) gives
n
∑n

i=1 a
2
i > (

∑n
i=1 ai)

2
.
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(b) (c)(a)

Figure 2.1: The open balls (a) S(d1)(x, r), (b) S(d2)(x, r) and (c) S(d∞)(x, r), in
R2.

We call S(x, r) an open ball so now we prove that it is actually an open set in
the next lemma which is [10, Lemma 2.3.7].

Lemma 2.2. Let S(x, r) be an open ball in a metric space (X, d). Then S(x, r) is
open in X.

Proof. Let y ∈ S(x, r). Put s = r − d(x, y) > 0, then for z ∈ S(y, s), using (M3),
d(x, z) 6 d(x, y) + d(y, z) < d(x, y) + r− d(x, y) = r and so z ∈ S(x, r). This proves
S(y, s) ⊂ S(x, r).

For A,B ⊂ X the set difference or complement of B with respect to A is defined
as A \B = {x : x ∈ A, x /∈ B}.

A set A ⊂ X is closed in X if and only if X \ A is open.
In general open sets and closed sets are quite special and most sets are in fact

neither open nor closed as the next example shows. This example also emphasises the
importance of the parent space. (We don’t provide a picture of it as it’s impossible
to draw one).

Example 2.3. Let (C, | |) be the metric space which is the complex plane together
with the Euclidean metric and let X = P ∪Q ⊂ C, where P is the closed unit disc
centred at −1 without the point at 0, Q is the closed unit disc centred at 1 also
without the point at 0, and P ∩Q = ∅. Specifically

P = {z ∈ C : |z + 1| 6 1} \ {0} ,
Q = {z ∈ C : |z − 1| 6 1} \ {0} .

Then P and Q are neither open nor closed in C. However P and Q are both open
and closed in X.

Consider an open ball centred at −2 ∈ P , then SC(−2, r) 6⊂ P for any value of
r > 0, so P is not open in C. Similarly 0 ∈ C \ P and SC(0, r) 6⊂ C \ P for any
r > 0, so C \ P is not open in C. This means P is not closed in C either. A similar
argument also works for Q.

To show P is open in X we need to consider (X, | |) as a metric subspace of
(C, | |). (Strictly speaking (X, | |) = (X, | |X) where | |X is the restriction of | | to
X, but the notation is complicated enough already). We need to show that for any
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z ∈ P there exists r > 0 such that SX(z, r) ⊂ P . For any point z ∈ P there is
always a positive distance to the y-axis (the imaginary axis in C), so we can always
make r small enough so that SX(z, r) ∩ Q = ∅ which implies SX(z, r) ⊂ P since
P ∩ Q = ∅. This means P is open in X. Similarly Q is open in X. As Q = X \ P
and P = X \Q it follows that P and Q are also both closed in X.

The definitions of the different types of connectedness that follow only need the
ideas of open sets and continuous functions and this makes topological spaces, rather
than metric spaces, the most general setting for the definitions.

2.2 Topological spaces

A topological space (X, TX) consists of a non-empty set X, together with a fixed
collection TX of subsets of X satisfying

(T1) ∅, X ∈ TX ,
(T2) the intersection of any two sets in TX is in TX ,
(T3) the union of any collection of sets in TX is in TX .

In this general setting to say A ⊂ X is an open set means only that A ∈ TX with
no other special meaning given to the word open and TX is known as a topology for
X. To give one example, if we put TX = P(X), the set of all subsets of X, then
the axioms (T1), (T2) and (T3) hold and TX is a topology known as the discrete
topology for X.

We now show that any metric space (X, d) can always be regarded as a topological
space.

Lemma 2.4. Let (X, d) be a metric space. Then

(a) ∅, Xare open sets,

(b) the intersection of any two open sets is open,

(c) the union of any collection of open sets is open.

Proof. (a) Vacuously ∅ is an open set, and clearly X is open since x ∈ X implies
S(x, r) ⊂ X for any r > 0.

(b) If A ∩B = ∅ then A ∩B is open by part (a), so we may assume A ∩B 6= ∅.
Let x ∈ A ∩ B. Since A and B are open there exist r, s > 0 such that S(x, r) ⊂ A
and S(x, s) ⊂ B. It follows that S(x,min(r, s)) ⊂ A∩B which proves A∩B is open.

(c) Let A 6= ∅ be the union of any collection of open sets in X and let x ∈ A. It
follows that x ∈ B for some open set B, so there exists r > 0 such that S(x, r) ⊂
B ⊂ A. This proves A is open.

De Morgan’s laws state that

X \
⋃
α∈I

Aα =
⋂
α∈I

(X \ Aα) and X \
⋂
α∈I

Aα =
⋃
α∈I

(X \ Aα), (2.3)

and prove the following corollary to Lemma 2.4 which shows that a topological space
can also be defined in terms of its closed sets.
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Corollary 2.5. Let (X, d) be a metric space. Then

(a) ∅, Xare closed sets,

(b) the union of any two closed sets is closed,

(c) the intersection of any collection of closed sets is closed.

Lemma 2.4 shows that the axioms (T1), (T2), and (T3) hold for the open sets
of any metric space. This means we can always consider any metric space (X, d) as
a topological space (X, TX) where TX is the metric topology defined as

TX = {U : U ⊂ X, U is open in X} .

If it is not clear from the context then the notation TX(d) can be used to make clear
which metric is being referred to with

TX(d) = {U : U ⊂ X, U is d-open in X} .

Now it makes sense to talk about C with the Euclidean topology, meaning the
topological space (C, TC) where TC is the set of all open sets of C with respect to
the metric | |. As we have already seen in Example 2.3, TC $ P(C).

Whilst all metric spaces can be regarded as topological spaces not all topological
spaces are metrizable. That is, given a topological space we can’t always turn it
into a metric space, see [10, Example 3.1.6].

An important part of a topological space are its topological subspaces, see [10,
Definition 3.4.1].

Let (Y, TY ) be a topological space and X ⊂ Y a non-empty subset, then the
subspace topology TX is defined as

TX = {U ∩X : U ∈ TY } ,

and (X, TX) is called a topological subspace of (Y, TY ).
The axioms (T1), (T2), and (T3) hold for TX .
We now consider Example 2.3 again but this time in a topological setting (we will

see in Lemma 4.3 of Section 4 that (X, TX) is disconnected). We have already shown
that P and Q are neither open nor closed in the metric space (C, | |), so by definition
P and Q are neither open nor closed in the Euclidean topology TC. We now consider
the subspace topology TX , where X = P ∪Q. Let U = {z : z = x+ iy ∈ C, x < 0}
and V = {z : z = x+ iy ∈ C, x > 0}, then U , V ∈ TC and consequently U ∩X =
P = X \ Q ∈ TX and V ∩X = Q = X \ P ∈ TX . So P and Q are both open and
closed in the subspace topology. This agrees with what we found considering (X, | |)
as a metric subspace of (C, | |).

Whether we consider metric subspaces on their own or as topological subspaces,
the definitions produce the same results for open and closed sets. Of course the
definitions have been designed to agree in this respect, see [10, Exercise 3.9.13].

We now briefly describe continuous functions in a topological setting. For a map
f : X → Y suppose A ⊂ X then we use the notation f(A) for the image of A,
with f(A) = {f(a) : a ∈ A} ⊂ Y . For B ⊂ Y we use the notation f−1(B) for the
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preimage of B, with f−1(B) = {x : x ∈ X, f(x) ∈ B} ⊂ X. We note the following
for P,Q ⊂ X and R, S ⊂ Y ,

(a) f(P ) ⊂ R if and only if P ⊂ f−1(R),

(b) f−1(R ∪ S) = f−1(R) ∪ f−1(S),

(c) f−1(R ∩ S) = f−1(R) ∩ f−1(S),

(d) f(P ∪Q) = f(P ) ∪ f(Q),

(e) f(P ∩Q) ⊂ f(P ) ∩ f(Q).

To see we don’t have equality for (e) let f : R→ R be the map f(x) = (x−1)2 then
if P = [0, 1] and Q = [1, 2] we have f(P ∩Q) = f({1}) = {0} $ [0, 1] = f(P )∩f(Q).

As another example where we don’t have equality for (e), let g : [0, 1] → [0, 1]
be the doubling map defined as follows

g(x) =

{
2x if x ∈

[
0, 1

2

]
,

2x− 1 if x ∈
(
1
2
, 1
]
.

Let P =
[
0, 1

2

]
and Q =

[
1
2
, 1
]

then g(P ∩ Q) = g({1/2}) = {1} $ (0, 1] =
g(P ) ∩ g(Q).

It is important to note that if f is injective then we do have equality for (e). Com-
paring (c) and (e), preimages are better behaved than images under set intersection
in general.

In Definitions 3 and 4 that follow preimages rather than images are used in the
definition of continuity. To see why this is the case consider the function f : R→ R
defined as f(x) = 0. Let U ⊂ R be open then f(U) = {0} so the images of open
sets are closed for f . This is not the case for the preimages of open sets. If 0 /∈ U
then f−1(U) = ∅ which is open and if 0 ∈ U then f−1(U) = R which is also open,
so preimages of open sets are open for f and so, by Definitions 3 and 4, f is a
continuous function.

Before giving the general definition of a continuous function between topological
spaces in Definition 4, we first give three different but equivalent definitions of a
continuous function between metric spaces, as it’s useful to see them all in one
place, see [10, Definitions 2.1.3, 2.3.6, and Proposition 2.3.13]. In the first two
definitions δ = δ(ε, a), that is δ depends on both ε and a.

1. The (ε, δ)-definition. Let (X, d1) and (Y, d2) be metric spaces. A map f :
X → Y is continuous at a ∈ X if and only if given any ε > 0, there exists δ > 0
such that d1(x, a) < δ implies d2(f(x), f(a)) < ε.

2. The open ball definition. Let (X, d1) and (Y, d2) be metric spaces. A map
f : X → Y is continuous at a ∈ X if and only if given any S(d2)(f(a), ε), there
exists S(d1)(a, δ) such that f(S(d1)(a, δ)) ⊂ S(d2)(f(a), ε).

We say f is continuous when f is continuous at all points of X.
3. The open set definition. Let (X, d1) and (Y, d2) be metric spaces. A map

f : X → Y is continuous if and only if U is d2-open in Y implies f−1(U) is d1-open
in X.

Definition 3 generalises to a topological setting.
4. Let (X, TX) and (Y, TY ) be topological spaces. A map f : X → Y is continuous

if and only if U ∈ TY implies f−1(U) ∈ TX .
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Such f is said to be (TX , TY )-continuous.
The next lemma is useful and states what we expect to be the case.

Lemma 2.6. Let (X, TX) and (Y, TY ) be topological spaces and suppose f : X → Y
is a continuous map. Let (A, TA) be a topological subspace of (Y, TY ) such that
f(X) ⊂ A ⊂ Y , then f : X → A is also continuous.

Proof. Let U ∈ TA then, from the definition of a continuous function, we need
to show that f−1(U) ∈ TX . As U ∈ TA, U = V ∩ A for some V ∈ TY with
f−1(V ) ∈ TX . It is also the case that X ⊂ f−1(A) ⊂ X so f−1(A) = X. Therefore
f−1(U) = f−1(V ∩A) = f−1(V )∩f−1(A) = f−1(V )∩X ∈ TX by (T1) and (T2).

Given two topological spaces (X, TX) and (Y, TY ) a map f : X → Y is a home-
omorphism if and only if f is a bijection (one-to-one and onto) such that f is
(TX , TY )-continuous and f−1 is (TY , TX)-continuous.

If f is a homeomorphism between (X, TX) and (Y, TY ) then it follows that U ∈ TX
if and only if f(U) ∈ TY . So the two spaces must have the same open set structure
and they are said to be homeomorphic or topologically equivalent.

It is natural to ask whether continuity in both directions is really necessary for a
homeomorphism. One way to show that this is the case is with examples involving
compact sets which we now briefly discuss.

Let (X, TX) be a topological space. For A ⊂ X any collection of open sets in X,
{Aα : α ∈ I}, such that A ⊂

⋃
α∈I Aα, is called an open cover of A and {Aα : α ∈ I}

contains a finite subcover if A ⊂
⋃
β∈J Aβ, where J ⊂ I is a finite indexing set. A

set A ⊂ X is compact in X if and only if every open cover of A contains a finite
subcover.

Suppose (X, TX) is a topological subspace of (Y, TY ) then it follows from the
definitions that if X is compact in Y then it is also compact in X, that is (X, TX) is
a compact topological space. Compactness is inherited by subspaces. It also follows
from the definitions that if X is compact in X then it is also compact in Y .

In n-dimensional Euclidean space (Rn, | |), a set is compact if and only if it is
closed and bounded. This is the Heine-Borel Theorem [10, Theorem 5.7.1]. (Let
(X, d) be a metric space then A ⊂ X is bounded if there exists K > 0 such that
d(x, y) 6 K for all x, y ∈ A.) So for example [0, 1] is a compact subset of R as it
is closed and bounded. The Mandelbrot set is compact (for a proof see [1, Section
9.10]) and so closed and bounded. (In general if a metric space is closed and bounded
this is not enough to imply compactness. For example ((0, 1), | |) is closed (in itself)
and bounded but it is not compact. With more definitions and work it can be
shown that a metric space (X, d) is compact if and only if it is complete and totally
bounded, see [10, Propositions 7.2.9, 9.2.4 and Theorem 10.1.8].)

To illustrate the definitions we show that the half-open interval [0, 1) is not
compact. Consider [0, 1) with the Euclidean subspace topology T[0,1) as a subspace
of (R, TR). As (−1, 1− 1

n
) ∈ TR, it follows from the definition of a subspace topology

that [0, 1 − 1
n
) = (−1, 1 − 1

n
) ∩ [0, 1) ∈ T[0,1). Clearly [0, 1) ⊂

⋃
n∈N[0, 1 − 1

n
) where{

[0, 1− 1
n
) : n ∈ N

}
is an open cover in T[0,1). However it doesn’t contain a finite

subcover. If it did then there exists a maximum m such that [0, 1− 1
m

) contains all
other intervals in a finite cover, but [0, 1 − 1

m
) doesn’t cover [0, 1). So ([0, 1), T[0,1))
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is not compact. Since compactness is inherited by subspaces [0, 1) is not compact
in R or R2 either.

We now return to our discussion of homeomorphisms. A property that is pre-
served under homeomorphisms is called a topological invariant. The property of
being compact is a topological invariant since the continuous image of a compact
set is also compact, see [10, Proposition 5.5.1]. So if two spaces are homeomorphic
and one of them is compact then so must be the other. This suggests a strategy for
providing examples where a map f is a continuous bijection but f−1 is not continu-
ous. It is enough to find a continuous bijection f : X → Y , where X is not compact
but Y is, then f−1 can’t be continuous (as this would imply X is compact). Consider
[0, 1) and the unit circle C as subsets of C, we have seen that [0, 1) is not compact
in C, whereas C is closed and bounded in C and so compact. Now f : [0, 1) → C,
with f(z) = e2πiz is a continuous bijection but f−1 is not continuous.

In Lemma 2.7 that follows we consider a condition on metrics which ensures
that two metric spaces (X, d1) and (X, d2) with the same underlying set X are
homeomorphic. In fact we show more than topological equivalence, because we
show that the open sets are actually identical, that is we show TX(d1) = TX(d2)
which is the same thing as saying that the identity map is a homeomorphism. The
condition on the metrics required is known as Lipschitz equivalence.

Let (X, d1) and (X, d2) be two metric spaces with the same underlying set X.
The metrics d1 and d2 are Lipschitz equivalent if there exist constants h,K > 0 such
that for any x, y ∈ X

hd2(x, y) 6 d1(x, y) 6 Kd2(x, y). (2.4)

Lemma 2.7. Let (X, d1) and (X, d2) be two metric spaces with Lipschitz equivalent
metrics.

Then

(a) Every d2-open ball contains a d1-open ball and vice versa.

(b) TX(d1) = TX(d2).

(c) The identity map I : X → X is a homeomorphism.

Proof. (a) Let x ∈ X and r > 0. First we show S(d1)(x, rh) ⊂ S(d2)(x, r). Let
y ∈ S(d1)(x, rh) then d1(x, y) < rh and by (2.4), d2(x, y) 6 (1/h)d1(x, y) < r so
y ∈ S(d2)(x, r).

Secondly we show S(d2)(x, r/K) ⊂ S(d1)(x, r). Let y ∈ S(d2)(x, r/K) then
d2(x, y) < r/K and by (2.4), d1(x, y) 6 Kd2(x, y) < r so y ∈ S(d1)(x, r).

Working from the definitions it is clear that statements (a), (b) and (c) are
equivalent.

It is not the case that if TX(d1) = TX(d2) then the metrics are Lipschitz equiva-
lent. As an example consider (R2, d1) and (R2, d2) with d1(x, y) = min {1, d2(x, y)}
and d2(x, y) the Euclidean metric.

Lemma 2.1 shows that the three different metrics defined in (2.1) are all Lipschitz
equivalent and so the metric topologies are identical by Lemma 2.7. That is, for the
metric spaces (Rn, d1), (Rn, d2) and (Rn, d∞), where the metrics are as defined in
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(2.1) the open sets are identical with TRn(d1) = TRn(d2) = TRn(d∞). So even though
the open balls are very different in shape, as shown in Figure 2.1 for R2, the open
sets are the same for these spaces. For problems dealing with continuity this gives
some freedom in the choice of metric.

We now give a proof (see [8]) that the open unit disc and the complex plane are
topologically equivalent.

Lemma 2.8. The metric spaces (D, | |) and (C, | |) are homeomorphic.

Proof. Let f : C→ D be defined by f(z) = z/(1 + |z|). Suppose f(z) = f(w) then
|z| (1 + |w|) = |w| (1 + |z|) so |z| = |w|, z = w and f is one-to-one. A calculation
shows the inverse of f is f−1(z) = z/(1 − |z|) so for any w ∈ D, f−1(w) ∈ C
and f is onto. It remains to show f and f−1 are continuous and we will use the
(ε, δ)-definition.

(a) f is continuous.
Let z, a ∈ C and let

B = z |a| − a |z| =
(
|z|+ |a|

2

)
(z − a)−

(
z + a

2

)
(|z| − |a|) . (2.5)

Then

|f(z)− f(a)| =
∣∣∣∣ z

1 + |z|
− a

1 + |a|

∣∣∣∣ =

∣∣∣∣z − a+ z |a| − a |z|
(1 + |z|)(1 + |a|)

∣∣∣∣
=

|z − a+B|
1 + |z|+ |a|+ |z| |a|

(2.6)

and using (2.5), (M3), and the backwards form of (M3) which is ||z| − |a|| 6 |z − a|,
we obtain

|z − a+B| =
∣∣∣∣(1 +

|z|+ |a|
2

)
(z − a)−

(
z + a

2

)
(|z| − |a|)

∣∣∣∣
6 (1 + |z|+ |a|) |z − a| .

Using this inequality in (2.6) gives

|f(z)− f(a)| = |z − a+B|
1 + |z|+ |a|+ |z| |a|

6

(
1 + |z|+ |a|

1 + |z|+ |a|+ |z| |a|

)
|z − a|

6 |z − a| .

Given any ε > 0, putting δ = ε, we have shown that |z − a| < δ implies
|f(z)− f(a)| < ε and since this holds for any a ∈ C, f is continuous.

(b) f−1 is continuous.
Let g(z) = f−1(z) = z/(1− |z|) and let z, a ∈ D, then

|g(z)− g(a)| =
∣∣∣∣ z

1− |z|
− a

1− |a|

∣∣∣∣ =

∣∣∣∣z − a+ a |z| − z |a|
(1− |z|)(1− |a|)

∣∣∣∣
=

|z − a−B|
(1− |z|)(1− |a|)

(2.7)
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and using (2.5), (M3), and the backwards form of (M3), we obtain

|z − a−B| =
∣∣∣∣(1−

(
|z|+ |a|

2

))
(z − a) +

(
z + a

2

)
(|z| − |a|)

∣∣∣∣
6 (1 + |z|+ |a|) |z − a| ,

and so (2.7) can be written as

|g(z)− g(a)| 6
(

1 + |z|+ |a|
(1− |z|)(1− |a|)

)
|z − a| . (2.8)

Now a ∈ D so |a| < 1 and S(a, (1 − |a|)/2) ⊂ D. Let z ∈ S(a, (1 − |a|)/2) then
|z| = |z − a+ a| 6 |z − a| + |a| < (1 − |a|)/2 + |a| = (1 + |a|)/2. It follows that
1 − |z| > 1 − (1 + |a|)/2 = (1 − |a|)/2 and so 1/(1 − |z|) < 2/(1 − |a|). As z ∈ D,
|z| < 1, and (2.8) becomes

|g(z)− g(a)| <
(

6

(1− |a|)2

)
|z − a| .

Given any ε > 0, putting δ = ε(1− |a|)2/6, we have shown that |z − a| < δ implies
|g(z)− g(a)| < ε and since this holds for any a ∈ C, g = f−1 is continuous.

3 Closure

In this section (X, TX) is a topological space so to say A is open means only A ∈ TX .
Any set can be turned into a closed set by taking the closure of it as we show in
Lemma 3.1(a).

The definition of a closed set in a topological space corresponds to the one for
metric spaces given in Section 2.

A set A ⊂ X is closed in X if and only if X \ A ∈ TX .
The interior of a set A ⊂ X, denoted by Int(A), is the largest open set contained

in A, that is

Int(A) =
⋃
G∈G

G,

where G = {G : G ⊂ A, G is open }.
The closure of a set A ⊂ X, denoted by Cl(A), is the smallest closed set con-

taining A, that is

Cl(A) =
⋂
F∈F

F,

where F = {F : A ⊂ F ⊂ X, F is closed}. As before we may write ClX(A) to
emphasise the parent space when it is not clear from the context.

A point x ∈ X is a limit point of A ⊂ X if and only if every open set U , for
which x ∈ U , is such that U ∩ (A \ {x}) 6= ∅. We use A′ for the set of limit points
of A. (Note: for metric spaces it is enough that S(x, r) ∩ (A \ {x}) 6= ∅, for every
r > 0).

The closure of a set can also be defined in terms of its limit points as the next
lemma shows.
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Lemma 3.1. Let A ⊂ X then
(a) Cl(A) is closed,
(b) Cl(A) = A ∪ A′,
(c) A is closed if and only if A = Cl(A).
(d) Int(A) is open.
(e) A is open if and only if A = Int(A).

Proof. (a) From the definition of closure and (2.3)

X \ Cl(A) = X \
⋂
F∈F

F =
⋃
F∈F

(X \ F ),

where F = {F : A ⊂ F ⊂ X, F is closed}. This is a union of open sets which is
open by (T3). This proves Cl(A) is closed.

(b) First we prove Cl(A) ⊂ A ∪ A′. From the definition of closure A ⊂ Cl(A)
so we need only consider x ∈ Cl(A) \ A and we need to show x ∈ A′. For a
contradiction suppose x /∈ A′, then there exists an open set U such that x ∈ U
and U ∩ (A \ {x}) = ∅. As x /∈ A, U ∩ A = ∅ and so X \ U is a closed set with
A ⊂ Cl(A) ⊂ X \U . However x /∈ X \U which means x /∈ Cl(A) and is the required
contradiction.

Now we show A∪A′ ⊂ Cl(A). As before we need only consider x ∈ A′ \A so for
a contradiction suppose x /∈ Cl(A). From the definition of closure there must exist
at least one closed set F , A ⊂ F ⊂ X, such that x /∈ F . For such F , x ∈ X \ F
which is an open set with (X \F )∩ (A\{x}) = ∅ so x /∈ A′ which is a contradiction.

(c) Suppose A is closed, it follows from the definition of closure that A ⊂ Cl(A)
and Cl(A) ⊂ A (as A ∈ F) so A = Cl(A).

If A = Cl(A) then A is closed by part (a).

(d) Any union of open sets is open by (T3).

(e) Suppose A is open, it follows from the definition of the interior that A ⊂
Int(A) (as A ∈ G) and Int(A) ⊂ A (as G ⊂ A for each G ∈ G), so A = Int(A).

If A = Int(A) then from the definition of Int(A), A is a union of open sets which
is open.

We conclude this section with the definitions of dense and nowhere dense sets,
see [10, Definitions 3.7.20, 3.7.21].

Let (X, TX) be a topological space then a subset A ⊂ X is (everywhere) dense
in X if and only if Cl(A) = X.

The set of rationals Q is a dense subset of R. Since the open interval (x, x + ε)
contains rational numbers for any x ∈ R and any ε > 0, it follows from the definition
of a limit point that x ∈ Q′, that is x is a limit point of Q. This means Cl(Q) =
Q ∪Q′ = R.

Let (X, TX) be a topological space then a subset A ⊂ X is nowhere dense in X
if and only if Int(Cl(A)) = ∅.

The integers Z are nowhere dense in R. This follows since Cl(Z) = Z, so Z is
closed and clearly Int(Z) = ∅. Lemma 3.3 shows that R \ Z is dense in R.

The next lemma is useful in the proof of Lemma 3.3 and provides another con-
venient characterization of the closure of a set.
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Lemma 3.2. Let (X, TX) be a topological space with A ⊂ X and let x ∈ X.
Then x ∈ Cl(A) if and only if every open set U ⊂ X, with x ∈ U , is such that

U ∩ A 6= ∅.

Proof. From Lemma 3.1(b), Cl(A) = A ∪ A′. Suppose U ⊂ X is an open set with
x ∈ U . If x ∈ A then U ∩A 6= ∅. From the definition of a limit point, if x ∈ (A′ \A)
then U ∩ (A \ {x}) = U ∩ A 6= ∅. This proves that if x ∈ Cl(A) then U ∩ A 6= ∅.

For the converse suppose every open set U ⊂ X, with x ∈ U , is such that
U ∩ A 6= ∅. If x ∈ A ⊂ Cl(A) there is nothing to prove. Suppose then that x /∈ A,
then U ∩ A = U ∩ (A \ {x}) 6= ∅ and x ∈ A′ ⊂ Cl(A).

The next lemma is [10, Proposition 3.7.28].

Lemma 3.3. Let (X, TX) be a topological space then a subset A ⊂ X is nowhere
dense in X if and only if X \ Cl(A) is dense in X.

Proof. Let x ∈ X. Then Int(Cl(A)) = ∅ if and only if every open set U ⊂ X,
with x ∈ U , is such that U ∩ (X \ Cl(A)) 6= ∅ if and only if x ∈ Cl(X \ Cl(A)).
The last if and only if follows by Lemma 3.2 and so Int(Cl(A)) = ∅ if and only if
X = Cl(X \ Cl(A)).

4 Connected and totally disconnected sets

Here is the definition of a connected set in a topological setting, see [10, Definition
6.2.2, Proposition 6.2.3].

A topological space (X, TX) is disconnected if and only if there exist non-empty
disjoint open subsets A,B ⊂ X such that X = A ∪ B. We call such sets {A,B} a
partition of X.

(X, TX) is connected if it is not disconnected.
An important aspect of this definition is that a set is disconnected with respect

to its own topology, not to the topology of a parent space. So for X ⊂ Y with TX
the subspace topology, (X, TX) is disconnected if and only if there exist non-empty
disjoint subsets, A,B ∈ TX , such that X = A∪B. A subspace (X, TX) is connected
if it is not disconnected.

The topological subspace (X, TX) of Example 2.3 is disconnected as {P,Q} par-
titions X.

The next lemma shows that the continuous image of a connected set is connected.
Connectedness is a topological invariant.

Lemma 4.1. Let (X, TX) and (Y, TY ) be topological spaces and suppose f : X → Y
is continuous. If X is connected then so is f(X).

Proof. Suppose f(X) is disconnected with {A,B} a partition. Then f(X) = A∪B,
A ∩ B = ∅ with A,B ∈ Tf(X). Now f : X → f(X) is continuous, by Lemma
2.6, so X = f−1(A) ∪ f−1(B) with f−1(A), f−1(B) ∈ TX and ∅ = f−1(A ∩ B) =
f−1(A) ∩ f−1(B). That is {f−1(A), f−1(B)} partitions X.

The next lemma is useful and follows from the definitions.
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Lemma 4.2. Let (Y, TY ) be a topological space and (X, TX) a disconnected topolog-
ical subspace with {A,B} a partition of X.

Then there exist U, V ∈ TY such that
(a) A = U ∩ A, B = V ∩B,
(b) A ∩ V = B ∩ U = ∅.

Proof. From the definition of a subspace topology, as A,B ∈ TX there exist U, V ∈
TY such that A = U ∩X and B = V ∩X. First we prove (b).

(b) Since X = A ∪ B and A ∩ B = ∅, we obtain ∅ = A ∩ B = A ∩ (V ∩ X) =
A ∩ (V ∩ (A ∪B)) = A ∩ V and similarly B ∩ U = ∅.

(a) As X = A∪B and A∩B = ∅, it follows that A = U∩X = U∩(A∪B) = U∩A
using (b), and similarly B = V ∩B.

The next lemma [10, Corollary 6.2.4] can be used to prove that X = P ∪ Q in
Example 2.3 is disconnected as P and Q are both open and closed in X.

Lemma 4.3. A topological space (X, TX) is connected if and only if the only subsets
of X that are both open and closed are ∅ and X.

Proof. First suppose ∅ and X are the only subsets of X that are both open and
closed. Assume (X, TX) is disconnected then X = A∪B, for non-empty A,B ∈ TX ,
A ∩ B = ∅ with X \ A = B and X \ B = A, so A and B are both open and closed
in X with {A,B} 6= {∅, X}. This contradiction proves (X, TX) is connected.

For the converse let (X, TX) be connected. Suppose there exists A ⊂ X, A 6= ∅,
A 6= X, and that A is both open and closed. Then X = A ∪ (X \ A) where A
and X \ A are non-empty open and disjoint and so (X, TX) is disconnected. This
contradiction proves that the only subsets of X that are both open and closed are
∅ and X.

We now relate the partition of a disconnected subspace to its parent space.

Lemma 4.4. Let (Y, TY ) be a topological space and (X, TX) a disconnected topolog-
ical subspace with {A,B} a partition of X.

Then
(a) ClY (A) ∩B = A ∩ ClY (B) = ∅,
(b) If X is closed in Y then so are A and B,
(c) If X is open in Y then so are A and B.

Proof. (a) ClY (A) ∩B = ∅.
There exists V ∈ TY such that B = V ∩ X ∈ TX and A ∩ V = ∅, by Lemma

4.2(b). It follows that A ⊂ Y \V , where Y \V is closed. For a contradiction suppose
ClY (A) ∩ B 6= ∅, then there exists x ∈ ClY (A) ∩ B. As x ∈ B = V ∩ X, x ∈ V .
From the definition of closure in Section 3, x ∈ F where F is any closed set in Y
with A ⊂ F , so x ∈ Y \ V . This is a contradiction.

(b) A is closed in Y .
As X is closed in Y , X = ClY (X) by Lemma 3.1(c). From the definition of

closure A ⊂ X implies ClY (A) ⊂ ClY (X) and so ClY (A) ⊂ X = A∪B. By part(a)
ClY (A) ⊂ A which means A = ClY (A) and A is closed in Y by Lemma 3.1(c).

(c) A is open in Y .
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By Lemma 3.1(a), ClY (B) is closed in Y , so W = Y \ ClY (B) is open with
W ∩ B = ∅. By part(a) A ⊂ W . Now W ∩X = W ∩ (A ∪ B) = W ∩ A = A. As
W ∩X ∈ TY by (T2), A is open in Y .

We can see Lemma 4.3(a) holds for the partition {P,Q} of Example 2.3 as clearly
ClC(P ) = P ∪ {0} so ClC(P ) ∩Q = ∅. As X = P ∪Q is neither open nor closed in
C, parts (b) and (c) don’t apply.

We have written out the proof of the next lemma in full just to show that the
definition of a subspace topology carries through as expected.

Lemma 4.5. Let (X, TX) be a connected subspace of a topological space (Y, TY ) and
suppose X ⊂ K ⊂ Y where (K, TK) is disconnected with partition {A,B}. Then
either X ⊂ A or X ⊂ B.

Proof. By Lemma 4.2 there exist U, V ∈ TY such that A = U ∩ A, B = V ∩ B and
A ∩ V = B ∩ U = ∅.

First we show X ∩ A = X ∩ U . Clearly X ∩ A = X ∩ (U ∩ A) ⊂ X ∩ U .
Suppose x ∈ X ∩U with x /∈ A. It follows that x ∈ X ∩B, but B ∩U = ∅ and this
contradiction implies X∩U ⊂ X∩(U∩A) = X∩A. In the same way X∩B = X∩V .

If both X ∩ A and X ∩ B are non-empty, then X = (X ∩ A) ∪ (X ∩ B) =
(X ∩ U) ∪ (X ∩ V ) and X is disconnected. It follows that one of X ∩A and X ∩B
is empty and so either X ⊂ A or X ⊂ B.

The next lemma is [10, Proposition 6.2.18].

Lemma 4.6. Let (Y, TY ) be a topological space and (X, TX) a connected topological
subspace. If X ⊂ K ⊂ ClY (X) then (K, TK) is connected.

Proof. For a contradiction assume (K, TK) is disconnected with {A,B} a partition
of K. By Lemma 4.5 it follows that either X ⊂ A or X ⊂ B. Without loss of
generality we may assume X ∩ B = ∅ with X ⊂ A and so from the definition of
closure ClY (X) ⊂ ClY (A). As B is non-empty and B ⊂ K ⊂ ClY (X) ⊂ ClY (A) it
follows that B ∩ ClY (A) 6= ∅ which is impossible by Lemma 4.4(a).

The next lemma, which is [10, Proposition 6.2.15], says nothing about inter-
sections being connected. Consider a triangle, let two sides be the set A and the
third B, then A and B are connected with non-empty intersection, so A ∪ B (the
whole triangle) is connected. However A ∩ B consists of two distinct points and
is disconnected. Also consider three sets consisting of the three sides of a triangle,
the pairwise intersections consist of single points, and the intersection of all three is
empty but their union is still connected.

Lemma 4.7. Let {Xα : α ∈ I} be a collection of connected subspaces of a topological
space (Y, TY ) for some indexing set I, and suppose for all α, β ∈ I, Xα ∩ Xβ 6= ∅.
Then X =

⋃
α∈I Xα is a connected subspace of (Y, TY ).

Proof. Suppose X is disconnected and {A,B} is a partition for X. Now Xα ⊂ X =
A∪B. By Lemma 4.5, either Xα ⊂ A or Xα ⊂ B. Suppose there exist Xα ⊂ A and
Xβ ⊂ B then Xα ∩Xβ = ∅ which can’t happen either. It follows that one of A or
B is empty which means {A,B} is not a partition for X. This contradiction proves
X is connected.
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If not explicitly stated the Euclidean topology (Rn, TRn) is always assumed from
now on.

We now consider the connectedness of subsets of the real line. It can be shown
that X is a connected subspace of R if and only if X is an interval, see [10, Theorems
6.2.7, 6.2.8], but we aim to prove only that the interval [0, 1] ⊂ R is connected.

We use the conventional notation for a real interval, so for a, b ∈ R, (a, b] = {x :
x ∈ R, a < x 6 b} and so on.

The completeness axiom for R ensures that any non-empty set of real numbers,
A ⊂ R, that is bounded above, has a least upper bound or supremum which we
denote by supA. Specifically for a non-empty set A ⊂ R, that is bounded above,
there exists supA ∈ R, such that

(i) a 6 supA, for all a ∈ A,
and (ii) if b is an upper bound for A, then supA 6 b.

The greatest lower bound or infimum is defined in a similar way and is denoted by
inf A.

If A ⊂ R with supA /∈ A then it follows from the definitions that supA is a
limit point of A and similarly for inf A. This means that it is always the case that
inf A, supA ∈ ClR(A) by Lemma 3.1(b). We use this fact in the proof of the next
theorem.

Theorem 4.8. The interval [0, 1] ⊂ R is connected.

Proof. For a contradiction suppose [0, 1] is disconnected with {A,B} a partition
and, relabelling if necessary, let 0 ∈ A.

(a) Either inf B ∈ A or inf B ∈ B.
This follows since inf B ∈ ClR(B) ⊂ ClR([0, 1]) = [0, 1]. The last equality follows

by Lemma 3.1(c) as [0, 1] is closed.

(b) inf B ∈ ClR(A) and inf B ∈ ClR(B).
We only need to show inf B ∈ ClR(A). If inf B = 0 then ClR(B)∩A = {0}, this

contradicts Lemma 4.4(a) and so 0 < inf B. As [0, 1] = A ∪ B and A ∩ B = ∅, it
must be the case that [0, inf B) ⊂ A and so inf B ∈ ClR([0, inf B)) ⊂ ClR(A).

Statements (a) and (b) contradict Lemma 4.4(a), so [0, 1] is connected.

This proof doesn’t carry through for Q ∩ [0, 1] because inf B may not be in
Q ∩ [0, 1], so statement (a) may not hold. In fact Q ∩ [0, 1] is totally disconnected
as we see below.

As described in [10, Section 6.5] a topological space can always be expressed as
a union of connected components using an equivalence relation. Let (X, TX) be a
topological space then we can define an equivalence relation ∼ on X as follows. For
x, y ∈ X,

x ∼ y if and only if x, y ∈ C for some connected subspace C ⊂ X.

Clearly x ∼ x (reflexive) and x ∼ y = y ∼ x (symmetric). To see x ∼ y, y ∼ z
implies x ∼ z (transitive), suppose x, y ∈ C and y, z ∈ C ′ for some connected
subspaces C, C ′. As y ∈ C ∩ C ′, C ∩ C ′ 6= ∅. It follows that x, z ∈ C ∪ C ′ which
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is connected by Lemma 4.7. The equivalence relation ∼ partitions X either into
one component in which case X is connected or else it partitions X into non-empty
mutually disjoint equivalence classes which we call the connected components of X.
These components can be defined explicitly as the largest connected subspaces of
X. Let x ∈ X, then Cx ⊂ X, the largest connected component containing {x}, is
defined as

Cx =
⋃
C∈C

C (4.1)

where C = {C : x ∈ C ⊂ X,C is connected}. Now {x} ∈ C so x ∈ Cx and Cx is
non-empty. As x ∈ C for all C ∈ C, Cx is connected by Lemma 4.7. Also by Lemma
4.6, ClX(Cx) is connected so ClX(Cx) = Cx and Cx is closed by Lemma 3.1(c).

To summarise, any topological space (X, TX) can be expressed as the union of
one or more non-empty, mutually disjoint, closed, connected components.

When all the components are single points {x} then (X, TX) is totally discon-
nected.

In Example 2.3, X = P ∪ Q is disconnected where P and Q are two closed (in
X) connected components.

The set of rational numbers Q (as a subspace of R) is totally disconnected. To
see this consider (Q, TQ) as a subspace of (R, TR) with TR the Euclidean topology.
Suppose there exists a connected component C ⊂ Q with p, q ∈ C, and p < q. Now
consider (C, TC) as a subspace of (R, TR) and let α ∈ R \ Q with p < α < q. Let
U = {x : x ∈ R, x < α} and V = {x : x ∈ R, x > α}, then {C ∩ U,C ∩ V } is a
partition of C and C is not connected. It follows that all components of Q consist of
just one point and so Q is totally disconnected. (If we consider (Q, TQ) on its own
with TQ the Euclidean topology then we would still have to construct R in order to
show it is totally disconnected).

The quadratic Julia set J(fc) for c /∈ M is a totally disconnected set and for
c ∈ M it is a connected set. In fact it can be shown that any J(fc) is a non-
empty, uncountable, compact set, with no isolated points, see [1], [6] and [7] for
more information. Having no isolated points means every point of J(fc) is a limit
point. So even though J(fc) may be totally disconnected, no point is out on its own,
cut off from all the others by any finite distance. Douady and Hubbard proved in
[3] that the Mandelbrot set M is also a connected set.

In general for any rational map of degree n > 2, the Julia set J is uncountably
infinite with no isolated points and either J = C ∪ {∞} or Int(J) = ∅, see [1,
Theorems 4.2.1, 4.2.3, 4.2.4]. Also J is either connected or else it has uncountably
many connected components, see [7, Corollaries 4.14, 4.15] and also [1, Theorem
5.7.1].

5 Path-connected sets

In this section we define a path-connected set, a path-connected set is connected
but the converse is not true.

Let (X, TX) be a topological space. For a, b ∈ X a path from a to b in X is a
continuous function f : [0, 1]→ X such that f(0) = a and f(1) = b. We say that a
and b are joined by the path f , see [10, Definition 6.3.1].
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A topological space (X, TX) is path-connected if any two points in X can be
joined by a path in X, see [10, Definition 6.3.2].

We state the next lemma without a proof that h is continuous, see [10, Lemma
6.3.3].

Lemma 5.1. Let (X, TX) be a topological space. For a, b, c ∈ X, if f is a path from
a to b and g is a path from b to c, then we can construct a path h from a to c, by
putting,

h(x) =

{
f(2x) if x ∈

[
0, 1

2

]
,

g(2x− 1) if x ∈
[
1
2
, 1
]
.

The next lemma is [10, Proposition 6.4.1].

Lemma 5.2. A path-connected topological space is connected.

Proof. Let (X, TX) be path-connected but disconnected with partition {A,B}. As A
and B are non-empty there exist a ∈ A and b ∈ B. Let f be a path that joins a to b.
By Lemma 4.1, f([0, 1]) is a connected subspace of X since [0, 1] with the Euclidean
topology is connected by Theorem 4.8. Using Lemma 4.5 either f([0, 1]) ⊂ A or
f([0, 1]) ⊂ B neither of which is possible as f(0) = a ∈ A and f(1) = b ∈ B. This
contradiction implies (X, TX) is connected.

The next lemma shows that the continuous image of a path-connected set is
path-connected. Path-connectedness is a topological invariant.

Lemma 5.3. Let (X, TX) and (Y, TY ) be topological spaces and suppose f : X → Y
is continuous. If X is path-connected then so is f(X).

Proof. First of all f : X → f(X) is continuous by Lemma 2.6. Let c, d ∈ f(X) then
there exist a, b ∈ X such that f(a) = c and f(b) = d. Let g be a path from a to b in
X, then f ◦g is a path from c to d in f(X) (the composition of continuous functions
is continuous). Therefore f(X) is path-connected.

The next lemma is the analogue of Lemma 4.7 but for path-connected subspaces.

Lemma 5.4. Let {Xα : α ∈ I} be a collection of path-connected subspaces of a
topological space (Y, TY ) for some indexing set I, and suppose for all α, β ∈ I,
Xα ∩Xβ 6= ∅. Then X =

⋃
α∈I Xα is a path-connected subspace of (Y, TY ).

Proof. Let a, b ∈ X, then a ∈ Xα and b ∈ Xβ for some α, β ∈ I and let c ∈ Xα∩Xβ.
As Xα and Xβ are path-connected there are paths, f from a to c and g from c to b.
It follows that there is a path h from a to b by Lemma 5.1.

Let (X, TX) be a topological space, much as we did for connected components,
we can define an equivalence relation ∼ on X as follows.

For x, y ∈ X let x ∼ y if and only if there is a path in X from x to y.
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Clearly x ∼ x (reflexive) and x ∼ y = y ∼ x (symmetric). For x ∼ y, y ∼ z
implies x ∼ z (transitive) follows by Lemma 5.1. We use the notation Px for the
equivalence class containing x ∈ X where

Px = {y : y ∈ X, there is a path in X from x to y} , (5.1)

and call Px the path-connected component of x in X.
From the definition of the connected component Cx in (4.1) it follows that Px ⊂

Cx since Px is connected by Lemma 5.2. This means that any connected component
Cx can be expressed as a union of non-empty, mutually disjoint, path-connected
components. Unlike connected components, which are closed, these path-connected
components may not be closed in Cx. For an example see the discussion of the
topologist’s sine at the end of this section.

The key word in the next lemma is the word open, this is [10, Proposition 6.4.2].

Lemma 5.5. Any non-empty connected open subset U ⊂ Rn is path-connected.

Proof. Let x ∈ U and let Px ⊂ U be as defined in (5.1) with U = X.

(a) Px is open in U .
Let y ∈ Px then there is a path f from x to y in Px. As y ∈ U there exists r > 0

such that S(y, r) ⊂ U , as U is open in Rn. Let z ∈ S(y, r), then because the open
ball S(y, r) is a convex set there is a path g in S(y, r) from y to z. By Lemma 5.1
there exists a path h in U from x to z so z ∈ Px. This means S(y, r) ⊂ Px and Px
is open in Rn and hence in U .

(b) Px is closed in U .
Let y ∈ U \ Px, as U is open there exists r > 0 such that S(y, r) ⊂ U . Suppose

S(y, r) 6⊂ U \ Px, then there exists z ∈ S(y, r) such that z ∈ Px so there is a path
from x to z. But z ∈ S(y, r) means there is a path from z to y, so by Lemma 5.1
there is a path from x to y and y ∈ Px. This contradiction means S(y, r) ⊂ U \ Px
and U \ Px is open in Rn and hence in U . This proves Px is closed in U .

The fact that U is connected and Px is both open and closed in U means Px
is either ∅ or U by Lemma 4.3 and, since Px is non-empty, Px = U . That is U is
path-connected.

Returning to Example 2.3, suppose we restore the point {0} to P and Q, so
that they are closed unit discs centred at −1 and 1 respectively, with P ∩Q = {0}.
Inuitively X = P ∪Q is all of one piece and the easiest way to prove it is connected
is to show it is path-connected. As P and Q are convex they are path-connected.
So we need only consider the situation with w, z ∈ X, w ∈ P and z ∈ Q. There are
paths from w to 0 in P and from 0 to z in Q so there is a path from w to z in X and
X is path-connected. Lemma 5.2 proves X is connected. Removing 0 disconnects
X.

To end this section we consider an example of a connected set that is not path-
connected. This is the well-known topologist’s sine and can be defined as the set
K = G∪ J ⊂ R2 where G =

{
(x, sin( 1

x
)) : 0 < x 6 1

}
is the graph of y = sin( 1

x
) for

0 < x 6 1 and J = {(0, y) : y ∈ [−1, 1]} is the closed interval on the y-axis joining
the points (0,−1) to (0, 1), see [10, Figure 6.1] and [2, Figure 16, page 97] for
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illustrations. This is actually a compact topologist’s sine, because the topologist’s
sine shown in [10, Figure 6.1] is not compact as there G is defined for 0 < x. For
a detailed proof that K is connected but not path-connected see [10, Examples
6.2.19, 6.3.5]. As G is the continuous image of (0, 1], a connected interval, G is
connected by Lemma 4.1. The proof that K is connected depends on showing that
ClR2(G) = G ∪ J = K, for then G ⊂ K ⊂ ClR2(G), and since G is connected so is
K by Lemma 4.6. Clearly G and J are disjoint path-connected components of K.
Intuitively we may expect K not to be path-connected (travelling along G towards
the y-axis we are never going to get there) but the proof requires quite a lot of work,
see [10, Example 6.3.5].

As we pointed out earlier, connected components are closed. This is not the
case for path-connected components and K provides an example of a connected set
consisting of two disjoint path-connected components J and G with J closed in K
and G open in K. We summarize the situation in R2 (with the Euclidean topology)
and then in K as follows.

1. In R2: K and J are closed, G is neither open nor closed.
Clearly G is not open and J is closed in R2. As ClR2(G) = G∪J , see [10, Example

6.2.19], K = ClR2(K) so K is closed by Lemma 3.1(c). Similarly ClR2(G) 6= G and
G is not closed by Lemma 3.1(c).

2. In K: J is closed and not open, G is open and not closed.
Formally, as K\J = K∩(R2\J) ∈ TK from the definition of a subspace topology,

J is closed in K. As K \ G = J is closed, G is open in K. If G were closed in K
then {G, J} would be a partition and K would be disconnected, so G is not closed.
(Alternatively ClK(G) = G ∪ J so ClK(G) 6= G.) As G is not closed J is not open.

6 Simply connected sets

Here is a formal definition of a simply connected set from [9, Section 10.38]. A path
f : [0, 1]→ X is closed if f(0) = f(1).

Let (X, TX) be a topological space and let f0 and f1 be closed paths in X then
f0 and f1 are X-homotopic if there is a continuous mapping H : [0, 1]× [0, 1]→ X,
such that

H(s, 0) = f0(s), H(s, 1) = f1(s), H(0, t) = H(0, t). (6.1)

Now put ft(s) = H(s, t), then (6.1) defines a one-parameter family of closed curves
ft in X which connects f0 and f1. Here connects means we can continuously deform
f0 into f1 (via intermediate paths ft) whilst staying within X.

A constant path f is such that f([0, 1]) = {x} for some single point x ∈ X. If f0
is X-homotopic to a constant path f1 then f0 is null-homotopic in X.

A connected topological space (X, TX) is simply connected if and only if every
closed path in X is null-homotopic.

Roughly speaking X is simply connected if any closed path can be continuously
deformed to a point, so X has no holes. As the definition is based on paths, which
are continuous functions, the property of being simply connected is a topological
invariant (preserved under homeomorphisms). This means, for example, that a
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sphere is not homeomorphic to a torus as a torus is connected but it is not simply
connected.

We use the notation Σ for the Riemann sphere which can be defined as the
complex plane together with an added abstract point {∞} with Σ = C ∪ {∞}. It
can also be regarded as the surface of a unit sphere S in R3 centred at the origin
(0, 0, 0) with C = {(x, y, z) : (x, y, z) ∈ R3, z = 0}, considered as a plane in R3.
Under stereographic projection C is homeomorphic to S \ (0, 0, 1) where (0,0,1) is
the pole at the top of the sphere, which is identified with {∞}, see [1, Section 2.1]
and [9, Section 13.1]. It is usual to write A ⊂ Σ, for a subset A ⊂ C, when what is
really meant is the embedding of A in Σ under stereographic projection. Also (Σ, σ)
is a metric space where σ is the restriction of the Euclidean metric in R3 to Σ, σ is
known as the chordal metric, see [9, Section 13.1] for more information.

In [9, Theorem 13.11] Rudin proves that nine different definitions of a simply
connected set are equivalent, we state just three of them in the next theorem. For
a non-empty open connected set U ⊂ C we have already seen in Lemma 5.5 that U
is path-connected.

Theorem 6.1. Let U ⊂ C be a non-empty connected set which is open in C.
Then the following three statements are equivalent
(a) U is simply connected,
(b) U is homeomorphic to the open unit disc D,
(c) Σ \ U is connected.

We now briefly discuss the three statements of this theorem referring the reader
to [9, Theorem 13.11] for a proof.

To get an idea as to why the Riemann sphere makes an appearance consider
U = C \ Cl(D), then U is open and connected but not simply connected since a
closed path encircling the closed unit disc Cl(D) cannot be deformed to a point
whilst staying in C. However C \ U = Cl(D) is connected. Using the Riemann
sphere this is not the case as Σ \ U = Cl(D) ∪ {∞} which is not connected.

Some of the implications are much more difficult to prove than others. For
example to prove (b) implies (a) is relatively straightforward as the property of being
simply connected is a topological invariant and D is simply connected. However (a)
implies (b) requires the Riemann Mapping Theorem for U 6= C. (In Lemma 2.8 we
proved (b) for U = C).

To prove (a) implies (c) is also more difficult than it looks. For a contradiction
suppose X = Σ\U is disconnected with {A,B} a partition. As X is closed we know
from Lemma 4.4(b) that A and B are closed, so they are disjoint compact subsets of
Σ. This means there must be a strictly positive minimum distance between them,
however to go on and prove that U cannot then be simply connected requires more
work.

Finally we point out that Theorem 6.1 also holds if we consider U ⊂ Σ, U 6= Σ,
as a non-empty connected set which is open in Σ. We can always rotate U on Σ
if necessary so that U ⊂ Σ \ {∞}, then U is homeomorphic under stereographic
projection to U ⊂ C.
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7 Locally connected and locally path-connected

sets

We now give the definition of a locally connected set and a locally path-connected
set, basing these definitions on [10, Definition 6.5.5] and [7, pages 182-185].

A topological space (X, TX) is locally connected if and only if given x ∈ U ⊂ X,
where U is open in X, there exists a connected open set V such that x ∈ V ⊂ U .

A topological space (X, TX) is locally path-connected if and only if given x ∈
U ⊂ X, where U is open in X, there exists a path-connected open set V such that
x ∈ V ⊂ U .

That any topological space which is locally path-connected is locally connected
follows from the definitions using Lemma 5.2. There is a proof in [7, Lemma 17.17]
of the next lemma (which suggests there are examples of topological spaces that are
locally connected but not locally path-connected).

Lemma 7.1. Any compact locally connected metric space (X, d) is locally path-
connected.

This means for the Mandelbrot set M , which is compact, local connectedness is
equivalent to local path-connectedness. As M is connected the next lemma shows
that if M is locally connected (locally path-connected) then it is path-connected.

Lemma 7.2. Let (X, TX) be a connected topological space which is also locally path-
connected.

Then (X, TX) is path-connected.

Proof. Let x ∈ X, and let Px be the corresponding path-component as defined in
(5.1).

(a) Px is open in X.
Let y ∈ Px then y ∈ X and as X is open there exists a path-connected open set

Vy, with y ∈ Vy. For any z ∈ Vy, as there is a path from x to y in Px and a path
from y to z in Vy, there is a path from x to z in X, by Lemma 5.1, so z ∈ Px, and
Vy ⊂ Px. This means Px is a union of open sets and so is open in X by (T3).

(b) Px is closed in X.
If X \ Px = ∅ then Px = X and we are done. So now we consider X to be the

disjoint union of path-connected components, one of which is Px. It follows that
X \Px is a disjoint union of path-connected components which are open by part(a),
so X \ Px is open by (T3), and Px is closed.

Because X is connected the only subsets of X that are both open and closed are
∅ and X, by Lemma 4.3. As x ∈ Px, X = Px and so X is path-connected.

Here are just a few sets which illustrate some combinations of the different defini-
tions of connectedness which we have encountered. (Locally connected is equivalent
to locally path-connected in these examples).

1. In Example 2.3, X is locally connected but not connected or path-connected.

2. A quadratic Julia set that is totally disconnected is not locally connected.
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3. The topologist’s sine K is connected, but not path-connected and not locally
connected.

To see that K is not locally connected we can argue as follows. If K is locally
path-connected then it must be path-connected by Lemma 7.2. So K is not locally
path-connected. As K is closed and bounded it is compact. It follows by Lemma
7.1 that K is not locally connected. Therefore K is not locally path-connected or
locally connected.

4. The comb space C is path-connected but not locally connected.
The comb space, (C, TC), for C ⊂ R2 with TC the subspace topology, is defined

by C = J ∪ N ∪M where J is the closed interval on the y-axis of the topologist’s
sine with

J = {(0, y) : y ∈ [−1, 1]} ,

N =
⋃
n∈N

{(1/n, y) : y ∈ [−1, 1]} ,

M = {(x,−1) : x ∈ [0, 1]} ,

see [2, Figure 16, page 97] for an illustration. As C is compact, not locally path-
connected implies not locally connected by Lemma 7.1. To see that C is not lo-
cally path-connected consider the point (0, 0) ∈ C and let U = SC((0, 0), 1

2
), then

SC((0, 0), r) is not path-connected for all 0 < r 6 1
2

so there can’t exist a path-
connected open set V with (0, 0) ∈ V ⊂ U . Therefore C is not locally path-
connected or locally connected.

5. A Sierpiński curve is a non-empty, compact, connected, locally connected
and nowhere dense subset of the complex plane, with the property that any two
complementary domains are bounded by simple closed curves that are disjoint.

An interesting class of Julia sets are Sierpiński curve Julia sets. Sierpiński curve
Julia sets can be produced by some rational maps of the form f(z) = z2 + c/z2 and
they are homeomorphic to the Sierpiński carpet. This provides a link between some
repellers (Julia sets) and the attractor of an iterated function system (the Sierpiński
carpet). More information on Sierpiński curve Julia sets can be found in Devaney
and Look [4].

8 The Mandelbrot set and local connectivity

In this concluding section we discuss briefly what it might mean if the Mandelbrot
set M is or is not locally connected. (What follows is based on the articles [2] and
[5] where more information may be found.)

As discussed in [2, Section 8], if M is not locally connected then it is possible
its boundary may have some of the properties of the topologist’s sine K or the
comb C. Let R be the open right half-plane R = {(x, y) : (x, y) ∈ R2, x > 0}, then
K,C ⊂ R ∪ J where J = {(0, y) : y ∈ [−1, 1]} is the closed interval on the y-axis of
the topologist’s sine and the comb. Let I = int(J), so I = {(0, y) : y ∈ (−1, 1)} is
an open interval on the y-axis with I ⊂ K and I ⊂ C. It follows that there is no
path in (R \K)∪ I or in (R \C)∪ I that joins a point in R \K or R \C to a point
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in I. That is points in I are not reachable by paths that start from external points
that lie in (R \ K) or (R \ C). If M is not locally connected and its boundary is
similar to K then it may not be path-connected, if its boundary is like C then it
may be path-connected. In either case we would expect there to be points on its
boundary which are not accessible by paths starting from external points.

If M is locally connected then this is enough to imply that M is path-connected
by Lemma 7.2. Now we consider one other consequence if M is locally connected.
From Douady and Hubbard’s paper [3] they were able to construct an (analytic)
homeomorphism

Ψ : Σ \ Cl(D)→ Σ \M.

If f : Σ→ Σ is inversion in the unit circle defined as f(z) = 1/z, then

Ψ ◦ f : D → Σ \M.

is a homeomorphism from D, the open unit disc (on Σ) to Σ \M . It follows by
Theorem 6.1 that Σ \M is simply connected and hence M is connected. (As Σ \M
is connected, M is also simply connected). There is a theorem of Carathéodory, see
[7, Theorem 17.14], which states that if M is locally connected then the map Ψ ◦ f
can be extended to a continuous map

Ψ̃ ◦ f : Cl(D)→ Cl(Σ \M).

The formal definition of the boundary of a set is as follows.
Let (X, TX) be a topological space and let H ⊂ X then the boundary of H is

b(H) = Cl(H) ∩ Cl(X \H), [10, Definition 3.7.31].
As M is closed b(M) = M ∩Cl(Σ \M), which means Cl(Σ \M) = Cl(Σ \M)∩

(Σ \M ∪M) = Σ \M ∪ b(M). Similarly Cl(D) = D ∪ b(D) where b(D) is just the
unit circle.

It follows that if M is locally connected then there would be a continuous map
from D ∪ b(D) to Σ \M ∪ b(M). Specifically if g is a path that joins g(0) ∈ D to

a point g(1) ∈ b(D) on the boundary of the unit disc, then Ψ̃ ◦ f ◦ g is a path that

joins the point (Ψ̃◦f ◦g)(0) ∈ Σ\M to the point (Ψ̃◦f ◦g)(1) ∈ b(M). This means
that any point on b(M) would be accessible by a path from any point in Σ \M . It
would also mean that b(M) could be parametrized using the unit circle.

To summarize:

(a) Locally connected is equivalent to locally path-connected for M by Lemmas
5.2 and 7.1.

(b) If M is not locally connected then there may be points on the boundary of
M which are not accessible by paths starting from external points. In this case M
may or may not be path-connected.

(c) If M is locally connected then M is path-connected by Lemma 7.2 and all
the points on its boundary would be accessible by paths starting from any external
points. Also the boundary could be parametrized using the unit circle.

Knowing whether or not the Mandelbrot set is locally connected would provide
important information for the understanding of its geometry
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